/*! elementor – v3.11.4 – 12-03-2023 */
.elementor-widget-image{text-align:center}.elementor-widget-image a{display:inline-block}.elementor-widget-image a img[src$=”.svg”]{width:48px}.elementor-widget-image img{vertical-align:middle;display:inline-block} 


/*! elementor – v3.11.4 – 12-03-2023 */
.elementor-heading-title{padding:0;margin:0;line-height:1}.elementor-widget-heading .elementor-heading-title[class*=elementor-size-]>a{color:inherit;font-size:inherit;line-height:inherit}.elementor-widget-heading .elementor-heading-title.elementor-size-small{font-size:15px}.elementor-widget-heading .elementor-heading-title.elementor-size-medium{font-size:19px}.elementor-widget-heading .elementor-heading-title.elementor-size-large{font-size:29px}.elementor-widget-heading .elementor-heading-title.elementor-size-xl{font-size:39px}.elementor-widget-heading .elementor-heading-title.elementor-size-xxl{font-size:59px}
While artificial intelligence (AI) and machine learning (ML) are often discussed in terms of use cases, AI/ML data backup and recovery should be top of mind for organizations deploying the technology. Organizations should be asking themselves how much of their AI-generated data needs protection and how their backup and recovery processes need to adapt to take advantage of these rapidly evolving technologies.TechTarget’s Enterprise Strategy Group surveyed 375 IT and data professionals familiar with and/or responsible for data protection decisions and data science for their organization. “Reinventing Backup and Recovery with AI and ML” assesses the state of the backup and recovery landscape in terms of AI and ML while highlighting current and future use cases for AI and ML in backup and recovery solutions.In this report, you’ll learn about: